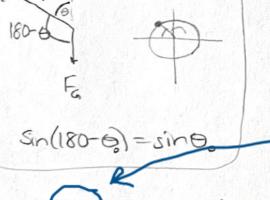


FRQ-6 Scoring Guide

Part a (5 points)



1 point: For indicating that the net torque is zero, or that the clockwise and counterclockwise torques are equal

,1 point: For a correct expression for the torque exerted by the string

1 point: For a correct expression for the torque exerted by the block

1 point: For a correct expression for the torque exerted by the rod

1 point: For adding the counterclockwise torques and setting the sum equal to the clockwise torque (this point not awarded for just one torque)

- $-(RT) + F_{GB}(2R)\sin(180-\theta_0) + F_{GR}(R)\sin(180-\theta_0)$ $-RT + (2mg(2R)\sin\theta_0) + mRg\sin\theta_0 = 0$ $+ mgRsin\theta_0 + mgRsin\theta_0 = RT$
 - Only four points could be earned if the wrong trigonometric function was used.
 - Only three points could be earned if no trigonometric function was used.

b) immediately:

1 point: For a value of torque equal to the tension in (a) times R

$$5(6)\frac{gsin0}{R} = d$$

$$\frac{6 \text{ gsin}\theta_0}{13 \text{ R}} = \infty$$

Part b(i) (4 points)

$$I = I_{disk} + I_{rod} + I_{block}$$

$$I = \frac{3}{2}mR^2 + \frac{4}{3}mR^2 + \frac{1}{3}mR^2 + \frac$$

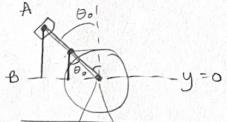
1 point: For indicating that the rotational inertia is the sum of the inertias of the disk, rod, and block.

$$= \frac{3}{2} mR^2 + \frac{4}{3} mR^2 + 8mR^2$$

= 9 mR2 8 mR2+48 mR2

= 65 mR2

1 point: For calculating the total rotational inertia


Part b(ii) (1 points)

bii) linear accel of the end of the rod:

1 point: For substituting the value of α and

$$= 12 g \sin \theta_0$$

c) linear speed of the mass at the end of the rod when it is horizontal

Initial height of center of mass of rod: $h_r = R\cos\theta_0$ Initial height of mass at end of rod: $h_m = (2R)\cos\theta_0$

$$E_A + W_{ext} = E_B$$

 $(U_G)_{rod} + (U_G)_{mass} + 0 = (1 + 1) + 0$

1 point: For indicating that the potential energy of two bodies (the rod and the block) changes

1 point: For the correct expressions for these two potential energies

mg(Rus
$$\theta_0$$
)+(2mg(2Rus θ_0)= $\frac{1}{2}$ ($\frac{65}{6}$ mR²) ω^2
 $\frac{12g\cos\theta_0}{13R} = \omega$

Now I need the linear (tangential) speed of the mass:

$$V_{\pm} = r\omega$$

$$= (2R) \left(\frac{12 g \cos \theta}{13R} \right)$$

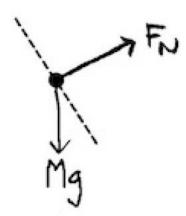
$$= 4R \left(\frac{3 g \cos \theta}{13R} \right)$$

$$= 4 \left(\frac{3 g \cos \theta}{13R} \right)$$

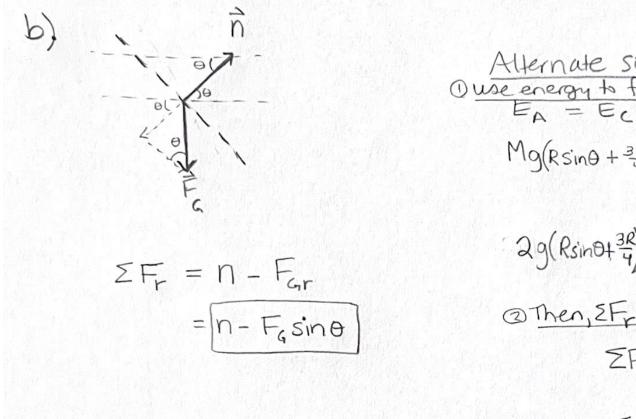
Part c (5 points)

1 point: For indicating that energy is conserved

1 point: For indicating the correct kinetic energy when the rod is horizontal


1 point: For using the relationship between linear and angular speed, and substituting ω and the correct radius of 2R

FRQ-7 Scoring Guide


Part a (2 points)

1 point: For either a weight force or a normal force, correctly drawn and labeled

1 point: For a second correct force and no additional forces, arrows, or components

Part b (1 point)

1 point: For a correct expression for the centripetal force in terms of the forces drawn in part a.

Alternate solution

Ouse energy to find
$$V_c$$
 $E_A = E_c$
 $Mg(R \sin \theta + \frac{3R}{4})$
 $2g(R \sin \theta + \frac{3R}{4}) = N_c^2$
 $2f_r = M(\frac{V_c^2}{R})$
 $2f_r = M(2g(R \sin \theta + \frac{3R}{4}))$
 $2f_r = 2Mg(\sin \theta + \frac{3R}{4})$

OR, for applying conservation of energy and obtaining this correct answer.

Part c (2 points)

Energy principle from A to D: EA + West = ED .

$$Mgh_A + 0 = \frac{1}{2}MV_D^2$$

$$g\left(\frac{7R}{4}\right) = \frac{1}{2}V_D^2$$

$$g\left(\frac{7R}{4}\right) = \frac{1}{2}V_{D}^{2}$$

$$\sqrt{\frac{79R}{2}} = V_D$$

- · West = 0 if the compartment and earth are in the system.
- · Initial height above D is R+ 3R = 7R

1 point: 1 point: For applying conservation of energy, with the loss of potential energy equal to the kinetic energy at point D

1 point: For a correct answer

Part d (3 points)

d) thereby principle:

$$E_b + W_{ext} = E_E$$

$$\frac{1}{2}MV_D^2 + 0 = E_{th}$$

1 point: For equating the kinetic $E_D + W_{ext} = E_E$ energy of the compartment at point D to the thermal energy at E

$$\frac{1}{2}M\left(\frac{79R}{2}\right)^{2} = f_{K}\Delta s$$

$$\frac{1}{2}M\left(\frac{79R}{2}\right)^{2} = \mathcal{L}_{K}Mg\left(3R\right)$$
1 point: For substituting the expression for v_{D} from part c ., and $d = 3R$

1 point: For a correct expression TMgR = MkMg (3R) for the frictional force

Newton's Laws + Kinematics:

$$\Sigma F_x = max$$

 $-f_x n = Max$

1 point: For using both N2L and a kinematics equation

$$-\mu(Mg) = Max$$

$$-\mu(g) = ax$$

1 point: For a correct expression for the frictional force

1 point: For substituting the expression for
$$v_D$$
 from part c ., and $d = 3R$

$$0 = \left(\frac{7gR}{2} \right)^2 + 2(-\mu_R)(3R)$$

$$0 = \frac{7gR}{2} - 6\mu_R R$$

$$\frac{7}{2} = -6\mu_R R$$

.58 = Mx

Part e(i) (2 points)

e)i) Differential equation for
$$V(t)$$

$$\sum_{x} F_{x} = ma_{x}$$

$$-kv = m \frac{dv}{dt}$$
velocity

1 point: For substituting the time derivative of velocity for the acceleration

1 point: For substituting the braking force into Newton's second law as the net force

Part e(ii) (2 points)

ii) Solve the differential equation $-kv = m \frac{dv}{dt}$

$$-\frac{k}{k} dt = \frac{dv}{dv}$$

1 point: For separating the variables and integrating

$$\int \frac{k}{m} dt = \int \frac{dv}{v}$$

$$-\frac{k}{m}t = lnv + c$$

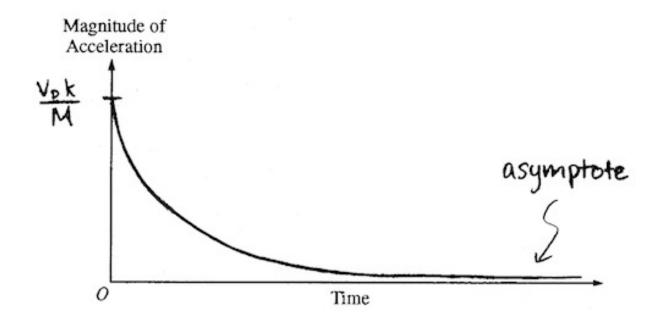
evaluate C.

At
$$t = 0$$
, $v = V_D$

$$-\frac{k}{m}(0) = \ln V_D + C$$

$$-\ln V_D = C$$

write expression with the constant value:
$$-\frac{k}{m}t = \ln (\frac{V}{V_D})$$


$$-\frac{k}{m}t = \ln (\frac{V}{V_D})$$

$$e^{-\frac{k}{m}t} = \frac{v}{v_{D}}$$

$$V_{D}e^{-\frac{k}{m}t} = v$$

1 point: For a correct expression for the velocity as a function of time

Part e(iii) (3) points)

1 point: For a graph with a finite intercept on the vertical axis

1 point: For a graph that is concave upward and asymptotic to zero

1 point: For labeling the initial acceleration with the correct value