Circular Motion Basic Concepts

Remember that for the radial axis, r, the thereation is always toward the center of the circle!

Assume constant speed f	or all motions described.		the circle!	
Description of Situation	1. Draw a free-body diagram showing all the forces on the object at the moment shown:	2. Draw a labeled vector showing the net force on the object at the moment shown in one color 3. Draw a labeled vector showing the acceleration in another color.	4. Write the Fnet = ma equation for the center- axis for the moment shown: General principle is (Fnet) = mar for	al
1. The moon revolving around the earth.	TEG ,	Fred &	(Fret)r=mar Fq=mar	
2. A toy car is attached to a string and moving in a circle on the floor (side view)	P → F G	V Francisco de la constantina della constantina	$(F_{net})_r = ma_r$ $T = ma_r$	
3. A car rounds a flat curve (side view)	Static friction is the force toward the center! Imagine		(Fret) = mar fs = mar	
4. Bucket attached to a rope, whirled in vertical circle (side view)a. For a point at the top	If frichon was zero	2 Francis	(Fret) = mar Fg+T=mar	
b. For a point at the bottom	The Tweeter needs	a Free!	(Fred) = mar T-Fg=mar	

The T vector needs
to be longer than the
Fa vector in order to
have Free toward
the center.

Description of Situation	1. Draw a free-body diagram showing all the forces on the object at the moment shown:	2. Draw a labeled vector showing the net force on the object at the moment shown in one color 3. Draw a labeled vector showing the acceleration in another color.	4. Write the Fnet = ma equation for the centeraxis for the moment shown:
5. Rollercoaster car moving through vertical circular loop (side view) a) For a point at the top	Both are down, but we don't know how magnitude compare.	That a	(Fher) r = mar n+Fg=mar
b) For a point at the bottom	n has greater magnitude than \vec{F}_{6}		(Fret) = mar h-Fq=mar
6. Car driving on a hilly road. a) for a point at the top of a hill	magnitude of n is less than magnitude of Fa	Free	(Fret) = mar Fg-n=mar
b) for a point at the bottom of a valley	magnitude of n is more than magnitude of F		$(F_{net})_r = ma_r$ $n - F_G = ma_r$
7. A car is on a banked curve in the road, and is not relying on friction to make the turn (cross-section view).	n is perpendicular	Fret Conter of circle is left of the car	(Fnet) = mar nr = mar mar more the vertical direct Efy = may ny - F = m(0)

the net force is the honzontal component of in, so that is no toward the center!