Physics by Discovery Standards 2017-18 (2nd Semester)

11. Newton's Law of Universal Gravitation

UG	I can apply the Law of Universal Gravitation	Reason about how doubling distance, masses, etc. affect the force Solve problems involving the Law of Universal Gravitation Use the Law of Universal Gravitation ($F = Gm_1m_2/r^2$) to find the gravitational field strength (g) near different large objects.

12. Central Force Model (Circular Motion)

CFM1	I can explain	Define "uniform circular motion"
	and apply	Identify the direction of acceleration and net force for different situation
	circular motion	involving objects moving in a circle or curved path.
	concepts	Draw a qualitatively correct free body diagram for the object at different points
	analyze	along its curved path.
	uniform	Qualitatively compare magnitudes of forces at different points along path
	circular motion	Explain the meaning of "centripetal"
	conceptually	Explain how acceleration depends on speed and path radius, and how changing
		either one affect the magnitude of the acceleration
CFM2	I can solve	Calculate an object's acceleration
	problems	Apply Newton's second law along the center, x, and/or y axes
	involving	Solve problems to find speed, radius of path, acceleration, mass, or forces
	circular motion	Solve problems involving satellites in orbit

13. Electric Circuit Models

	T	
EC1	Apply and give	Identify on a diagram when bulbs will and will not light
	evidence for the	Define conductors and insulators, explain how to test for them, give examples
	closed loop and	Trace the continuous conducting path in circuits and through internal parts of
	charge flow	light bulb.
	models	Explain direction of charge flow in a circuit and give experimental evidence
	(Sections 1,2)	Explain conventional charge flow and draw on circuit diagram
		Explain the effect of reversing a battery on the direction of charge flow
		Represent simple circuits with schematic diagrams
		Explain and draw the structure/parts of a capacitor
		Draw arrows to indicate direction of conventional charge flow throughout a
		circuit during capacitor charging and discharging
		Identify the places in a circuit where mobile charge originates.
		Compare and contrast the roles of a battery and Genecon in a circuit.
		Compare and contrast an air capacitor and a capacitor in an electric circuit.
		State experimental evidence (observations) for key statements in the models

EC2	<u>Apply and give</u> <u>evidence</u> for the Resistance and Incomppressible Fluid models (Sections 3,4)	Explain effect of resistors (including bulb filaments) on charge flow Explain the difference between flow rate and speed Explain effect of series/parallel arrangements on "overall" resistance Explain effect of thickness & length on "overall" resistance Describe the resistance of connecting wires. Use observations to infer resistance, flow rate, electric pressure
	(5001013 5,+)	Cite evidence that charge can be compressed Explain why electric pressure is uniform in any wire, and connected wires Explain in terms of electric pressure: capacitor charging, charged capacitor, capacitor discharging, battery, and bulb lighting Color-code circuits to represent electric pressure, and use them to predict which bulbs will light and their relative brightness.
EC3	Determine values for pressure	Explain what is measured by a "voltmeter" and "ammeter" and cite evidence Describe the resistance of each meter, experimental evidence that it has that resistance, and the reason it is designed to have that resistance
	difference & flow rate, and calculate resistance.	Apply the relationships between total pressure difference in a circuit and the pressure difference across individual components for series and parallel circuits. Apply the relationships between total current in a circuit and current through individual components for series and parallel circuits.
		Use the definition of resistance to calculate a value (Resistance = $\Delta V/I$) Explain and apply: Ohm's Law, ohmic resistance, and "non-ohmic resistance"
EC4	Quantitatively analyze series, parallel, and combination circuits	Find equivalent resistance for resistors in series and resistors in parallel Find equivalent resistance for combinations of series and parallel connections Determine unknown voltage drop, current, and resistance values at any place in a combination circuit.
EC5	Measure voltage and current	Set the dial and leads of a multi-meter to make it a voltmeter or ammeter Given a schematic diagram and equipment, put together a series, parallel, or combination circuit. Connect and use a meter to measure: - the pressure difference (change in voltage) across a circuit component - the flow rate (current) through a component Calculate values for resistors in the circuit using your measurements

14. Electric Forces and Fields

14. LI		
EF1	Explain	Explain how like and opposite charges interact
	electric	Explain what it means for charge to be "conserved"
	charge &	Explain what it means for charge to be "quantized"
	charging	Explain the properties of conductors, insulators, semiconductors, superconductors
	processes	Draw diagrams that show the location of $+$ and $-$ charge in objects at different stages of being charged by methods of conduction and induction
		Explain "polarization"
		Explain "grounding"
		Explain and illustrate why neutral conductors or insulators are attracted to charged objects
EF2	Explain and	Calculate electric force between two point charges using Coulomb's Law (Fe =
212	calculate the	$kq_1q_2/r^2)$
	electric force	Explain how the electric force depends on the magnitude of each charge and the distance between the charges
		Include magnitude and direction when stating a force
		Apply the superposition principle to find net electric force on a particular charge Compare and contrast the electric force with the gravitational force
EF3	Explain,	Define electric field in terms of the force on a test charge
	represent, and	Describe what quantities affect the strength of the electric field
	calculate	Determine the electric field vector at some location due to a point charge
	electric fields	Use the principle of superposition to find the net electric field at some point resulting from multiple point charges
		Draw electric field lines around one or two point charges.
<u> </u>	l	

15. Electrical Energy and Electric Potential

	energy and electric potential concepts	Define and explain "electric potential" and "electric potential difference" Solve problems involving electric potential, electric potential energy, and charge. <u>For special case of oppositely-charged parallel plates</u> : Define a system and set "zero" electric potential energy at negative plate Calculate electric potential energy of charged particle between plates Calculate changes in electric potential energy of charged particle between plates Apply conservation of energy to analyze the motion of charged particle Compare electric potential at different locations; identify equipotentials Calculate electric potential and changes in electric potential
EE2	Determine energy and power for circuit components	Explain the meaning of power Starting with "Power = energy transferred/time", derive an expression for electric power in terms of current and potential difference For resistors in an electric circuit, calculate power, energy transferred in some amount of time, cost of that energy

16. Magnetism (Ch 19, 20)

M1	Explain	Explain magnetic poles and how they interact
	properties of	Explain what a magnetic field line communicates
	magnets and	Draw magnetic fields: permanent magnet, earth, current-carrying wire, loop, and
	magnetic fields	coil
		Explain cause of magnetism; why some materials are magnetic
		Explain domains and draw domain diagrams for magnets, materials attracted/not
		attracted to magnets
		Explain why some non-magnets are attracted to magnets
		Explain how different materiasl inserted into an electromagnet affect its strength.
		Explain operation of buzzer & circuit breaker
M2	Determine	Determine the force (direction only) of a current's magnetic field on a magnet
	magnitude and	(such as a compass)
	direction of	Determine the force (magnitude and direction) of a magnetic field on a current-
	magnetic force.	carrying wire.
		Explain the operation of a simple motor and speaker.
		Determine the force (magnitude and direction) of a magnetic field on a free
		moving electric charge and analyze the resulting motion.
M3	Apply	Explain when a potential difference and current will be induced
	principles of	Calculate the magnetic flux through a loop
	electromagnetic	Determine the direction of the induced current in a loop (Lenz's Law)
	induction	Sketch a graph of magnetic flux vs time and rate of change of flux vs. time for a
		bar magnet moving through a loop
		Explain what affects the magnitude of the induced potential difference
		Calculate the induced potential difference and current (Faraday's Law)

17. Lab Report

TD	XX7 ·4	
LR	Write a	• Lab report includes the following sections: Purpose, Variables, Assumptions,
	complete,	Expectations, Method, Data, Analysis, Conclusion, and Discussion
	clear, and	• See the "Guidelines for Writing a Lab Report" for information
	thorough	
	report of an	
	experiment	

18. Light: Ray Nature

L1	Reflection	Explain what is necessary to see	
	Explain and	Draw light rays showing how an observer can see an object, how light rays reflect	
	apply the ray	from different surfaces, how pinhole cameras form images	
	nature of	Explain why we don't normally see laser light in air	
	light and the	Explain how our brain locates the position of the object it is seeing	
	law of	Apply the law of reflection by drawing incident and reflected rays	
	reflection	Draw light rays to locate images in plane mirrors	
		Describe the characteristics of the image formed by plane mirrors	
		Draw light rays and explain how a rear-view mirror and periscope work	
L2	Refraction	Apply Snell's Law to solve for unknowns (ni, θi, nr, θr)	
	Apply	Given a diagram showing incoming and outgoing light rays at a boundary,	
	principles of	qualitatively identify which medium has the higher index of refraction.	
	refraction and	Relate the index of refraction to the speed of light in a medium.	
	total internal	Determine which direction light must travel at a boundary for there to be a	
	reflection	possibility of total internal reflection	
		Define the critical angle, and calculate it for a given boundary	

		Determine the future path of a light ray at a boundary (reflect and refract -or-total internal reflection) Explain how fiber optic cables work
L3	Lenses Use diagrams and equations to analyze convex lens situations.	Draw a ray diagram and locate the image Use incoming parallel light rays to locate the focal point of a lens Use thin lens equation to calculate focal length, image distance, object distance Describe the difference between virtual and real images Describe characteristics of the image: size(larger, smaller, same size), type (real/virtual), orientation (upright/inverted) Calculate and interpret "magnification"

19. Waves and Sound (*This standard is only assessed on the final*)

WS	Waves and	Describe particle motion in transverse and longitudinal waves
	Sound	Identify amplitude, crest, trough, period, wavelength, frequency, and period from
		time and position graphs.
		Identify factors that do and don't affect the speed of a wave
		Relate period and frequency $(f = 1/T)$
		Calculate the speed of a wave in air using the equation $(v = 331 \text{ m/s} + 0.6\text{T})$
		Solve problems involving wavelength, frequency, speed, and period
		Define constructive interference and destructive interference; draw pulses that
		would demonstrate each type of interference; apply superposition to draw
		resultant wave
		For standing wave patterns on a string
		• Draw fundamental, 1st overtone, 2nd overtone, 3rd overtone.
		• Write an expression that relates the length of the string to the wavelength
		of the wave
		• Solve problems that relate speed of wave, length, wavelength, and
		frequency for the different vibrational modes.