## Physics by Discovery Standards 2013-14 (1st Semester)

## 1. Experiment Skills

\(\left.$$
\begin{array}{|l|l|l|}\hline \mathbf{1 . 1} & \begin{array}{l}\text { I can explain and } \\
\text { identify each pattern } \\
\text { (Linear, Quadratic, } \\
\text { Inverse, Inverse } \\
\text { square) }\end{array} & \begin{array}{l}\text { Describe general mathematical model, what is constant, shape of graph, } \\
\text { slope, how doubling x changes y, slope, other characteristics } \\
\text { Translate between representations } \\
\text { Identify pattern from a graph (w/o LoggerPro) and explain reasoning (state } \\
\text { a pattern characteristic and use numbers from the graph to show that the } \\
\text { data has that characteristic) }\end{array} \\
\hline \mathbf{1 . 2} & \begin{array}{l}\text { I can make a quality } \\
\text { graph and find a } \\
\text { pattern in data }\end{array} & \begin{array}{l}\text { Make quality graph (title, axes labels, units, nice scale, large size) } \\
\text { Plot data points accurately } \\
\text { Include error bars for uncertainty } \\
\text { Draw a best fit line } \\
\text { Linear: Calculate slope using two points ON the line; not data points } \\
\text { Use a graph and LoggerPro "helper" boxes to find pattern and constant } \\
\text { Find the pattern and constant from graph without using Logger Pro } \\
\text { Include units with the constant }\end{array}
$$ <br>

Write a mathematical model to represent the data\end{array}\right\}\)| I can make a data-Write a conclusion that includes: <br> based conclusion <br> and prediction. <br> claim <br> mathematical model <br> explanation of meaning (aim for at least 3 ideas) |
| :--- |
| $\mathbf{1 . 3}$ |

## 2. Constant Velocity Particle Model

| 2.1 | I can explain key <br> concepts for constant <br> velocity | Explain position, displacement, distance traveled <br> Explain constant speed and constant velocity <br> Explain vectors and scalars <br> Explain the meaning of specific values for position, displacement, speed, <br> and velocity. |
| :--- | :--- | :--- |
| 2.2 | I can create and <br> interpret different <br> representations of the <br> motion | Create and interpret graphs, motion maps, mathematical models, and <br> verbal descriptions of constant velocity motion. <br> Represent motion with velocity vectors of appropriate length and <br> direction <br> Find velocity from a position-time or velocity-time graph <br> Find displacement from a position-time or velocity-time graph <br> Use different representations to compare speeds, velocities, and positions <br> of more than one object. |
| 2.3 | I can use multiple <br> representations to <br> solve constant <br> velocity problems | Draw a picture of situation <br> Represent motion with graph, motion map, and mathematical model <br> Apply displacement, speed, and velocity equations to find unknown <br> Determine when and where two objects will meet |

## 3. Constant Acceleration Particle Model

| 3.1 | I can explain key <br> concepts for constant <br> acceleration. | Explain average speed and average velocity <br> Explain instantaneous velocity and how to find it from a graph <br> Explain the meaning of acceleration, how to find it from a graph, and <br> what its sign means in different situations. <br> Explain speed, velocity, and acceleration during free fall situations. |
| :--- | :--- | :--- |
| 3.2 | I can create and <br> interpret different <br> representations of the <br> motion | Translate between graphs, verbal descriptions, motion maps. <br> Given a position time graph, find instantaneous velocities at different <br> times and make a velocity-time graph. <br> Determine acceleration of an object from its velocity-time graph. |
| 3.3 | I can solve problems <br> involving motion with <br> constant acceleration | Apply constant acceleration equations to find an unknown <br> Identify special cases of motion (when initial velocity, final velocity, or <br> displacement is zero, free fall acceleration, conditions for two objects <br> to meet) <br> Show work thoroughly: <br> Draw a picture of situation <br> List variables: given and unknown <br> Identify type of motion occurring <br> Write equation that applies <br> Show substitution <br> Solve for unknown <br> Answer in complete sentence |

## 4. Vector Skills

| 4.1 | I can add and <br> subtract vectors <br> graphically | Choose an appropriate scale <br> Draw a scale diagram showing vector addition and resultant <br> Find magnitude and direction of resultant vector |
| :--- | :--- | :--- |
| 4.2 | I can use vector <br> components | Find resultant of two perpendicular vectors using right triangle properties <br> (Pythagorean theorem and inverse tangent) <br> Resolve a vector into two perpendicular components |

## 5. Projectile Motion

| 5.1 | Explain key <br> concepts for <br> projectile motion | Describe, draw, and give evidence for the horizontal and vertical aspects <br> of a projectile's motion. |
| :--- | :--- | :--- |
| 5.2 | Solve problems <br> involving <br> projectile motion | Set up coordinate system <br> Work with horizontal and vertical components separately <br> Determine horizontal and vertical components of initial velocity <br> Combine horizontal and vertical components to find a final velocity <br> Use characteristics of special points in the motion |

## 6. Balanced Forces Particle Model

| BF1 | I can identify and <br> diagram forces in a <br> situation. | Draw system schema diagram and identify force pairs <br> Draw a qualitatively accurate Free Body Diagram for an object <br> Represent forces as vectors with appropriate length \& direction |
| :--- | :--- | :--- |
| BF2 | I can explain <br> Newton's 1st Law <br> BF3 | I can apply the <br> balanced forces <br> model <br> (constant velocity or changing velocity) relate to the forces on the object <br> (balanced or unbalanced)? <br> Explain some situations/motions in terms of Newton's 1st Law <br> Describe experimental evidence for Newton's 1st Law |
| BF4 | I can explain and <br> apply Newton's 3rd <br> Law | Given the forces on an object <br> - determine sum of the forces graphically and using components <br> - determine which force and motion models apply <br> Given an at rest or moving with constant velocity <br> -determine which force and motion models apply <br> - find unknown forces graphically and using components <br> Explain how changing a force in a given situation will affect other forces <br> or the force and motion models that apply. |
| BF5 | Explain Newton's 3rd Law: How many forces are involved in an <br> interaction? How do these forces compare in magnitude? direction? Do <br> these forces act on the same object or different objects? |  |
| I can apply the Law |  |  |
| of Universal |  |  |
| Gravitation |  |  |$\quad$| When given one force, identify its Newton's 3rd Law pair |
| :--- |
| Apply N3L in situations to determine unknown forces. |

## 7. Unbalanced Forces Particle Model

| UF1 | I can explain <br> Newton's 2nd Law | Explain Newton's 2nd Law: How are force and acceleration related? <br> How are mass and acceleration related? Reason about how doubling <br> mass, doubling force, etc. affect acceleration <br> Describe experimental evidence for Newton's 2nd Law |
| :--- | :--- | :--- |
| UF2 | I can solve problems <br> involving unbalanced <br> forces | Recognize when the forces on an object are not balanced <br> Determine sum of forces and direction of acceleration from vector <br> addition diagram <br> Set up an appropriate coordinate system <br> Write sum of forces equations for x and y directions <br> Solve problems involving force and acceleration. <br> Solve multi-step problems involving kinematics and forces |
| UF3 | I can describe <br> friction and solve <br> related problems | Explain meaning of static friction, kinetic friection, coefficients of static <br> and kinetic friction, and how these variables are related. <br> Solve problems involving the static and kinetic friction relationships |

## 8. Linear Momentum

| M1 | I can apply impulse <br> and momentum <br> relationships | Calculate the momentum and change in momentum of a system <br> Draw a momentum bar chart to represent initial and final momentum <br> Explain the force conditions that cause a system's momentum to change <br> Determine the impulse from force and time information or graph <br> Relate change in momentum to forces applied to a system over time |
| :--- | :--- | :--- |
| M2 | I can apply <br> conservation of <br> momentum | Define a system so the momentum of the system stays constant <br> Draw a free body diagram of each object during the event <br> Identify the system with a dashed line boundary <br> Write the momentum conservation equation for the system <br> Solve for unknowns |

## 9. Energy

| E1 | I can determine <br> energy stored and <br> work done | Define a system <br> Identify energy storage modes at different moments <br> Draw energy pie charts and energy bar charts to represent system energy <br> Determine the work done by a force over some distance <br> Use work to determine the energy transferred in or out of a system <br> Calculate kinetic energy, gravitational potential energy, elastic potential <br> energy, and internal energy |
| :--- | :--- | :--- |
| E2 | I can apply <br> conservation of <br> energy | Define a system <br> Identify energy storage modes and energy transfers in/out of system <br> Identify initial and final moments that will yield a useful energy equation <br> Write an energy conservation equation for an initial and final moment <br> Use energy conservation equation to solve for unknowns |

