Physics by Discovery Standards 2013-14 (1st Semester)

1. Experiment Skills

-		
1.1	I can explain and	Describe general mathematical model, what is constant, shape of graph,
	identify each pattern	slope, how doubling x changes y, slope, other characteristics
	(Linear, Quadratic,	Translate between representations
	Inverse, Inverse	Identify pattern from a graph (w/o LoggerPro) and explain reasoning (state
	square)	a pattern characteristic and use numbers from the graph to show that the
	1 /	data has that characteristic)
1.2	I can make a quality	Make quality graph (title, axes labels, units, nice scale, large size)
	graph and find a	Plot data points accurately
	pattern in data	Include error bars for uncertainty
	1	Draw a best fit line
		Linear: Calculate slope using two points ON the line; not data points
		Use a graph and LoggerPro "helper" boxes to find pattern and constant
		Find the pattern and constant from graph without using Logger Pro
		Include units with the constant
		Write a mathematical model to represent the data
1.3	I can make a data-	Write a conclusion that includes:
	based conclusion	evidence
	and prediction.	claim
	-	mathematical model
		explanation of meaning (aim for at least 3 ideas)
		Determine a predicted value using a graph and mathematical model
		Write a prediction that includes:
		predicted value
		basis for the prediction (whose data?)
		confidence level with 2 reasons

2. Constant Velocity Particle Model

2.1	I can explain key	Explain position, displacement, distance traveled
	concepts for constant	Explain constant speed and constant velocity
	velocity	Explain vectors and scalars
		Explain the meaning of specific values for position, displacement, speed,
		and velocity.
2.2	I can create and	Create and interpret graphs, motion maps, mathematical models, and
	interpret different	verbal descriptions of constant velocity motion.
	representations of the	Represent motion with velocity vectors of appropriate length and
	motion	direction
		Find velocity from a position-time or velocity-time graph
		Find displacement from a position-time or velocity-time graph
		Use different representations to compare speeds, velocities, and positions
		of more than one object.
2.3	I can use multiple	Draw a picture of situation
	representations to	Represent motion with graph, motion map, and mathematical model
	solve constant	Apply displacement, speed, and velocity equations to find unknown
	velocity problems	Determine when and where two objects will meet

3. Constant Acceleration Particle Model

3.1	I can explain key	Explain average speed and average velocity
	concepts for constant	Explain instantaneous velocity and how to find it from a graph
	acceleration.	Explain the meaning of acceleration, how to find it from a graph, and
		what its sign means in different situations.
		Explain speed, velocity, and acceleration during free fall situations.
3.2	I can create and	Translate between graphs, verbal descriptions, motion maps.
	interpret different	Given a position time graph, find instantaneous velocities at different
	representations of the	times and make a velocity-time graph.
	motion	Determine acceleration of an object from its velocity-time graph.
3.3	I can solve problems	Apply constant acceleration equations to find an unknown
	involving motion with	Identify special cases of motion (when initial velocity, final velocity, or
	constant acceleration	displacement is zero, free fall acceleration, conditions for two objects
		to meet)
		Show work thoroughly:
		Draw a picture of situation
		List variables: given and unknown
		Identify type of motion occurring
		Write equation that applies
		Show substitution
		Solve for unknown
		Answer in complete sentence

4. Vector Skills

4.1	I can add and	Choose an appropriate scale	
	subtract vectors	Draw a scale diagram showing vector addition and resultant	
	graphically	Find magnitude and direction of resultant vector	
4.2	I can use vector	Find resultant of two perpendicular vectors using right triangle properties	
	components	(Pythagorean theorem and inverse tangent)	
		Resolve a vector into two perpendicular components	

5. Projectile Motion

5.1	Explain key	Describe, draw, and give evidence for the horizontal and vertical aspects
	concepts for	of a projectile's motion.
	projectile motion	
5.2	Solve problems	Set up coordinate system
	involving	Work with horizontal and vertical components separately
	projectile motion	Determine horizontal and vertical components of initial velocity
		Combine horizontal and vertical components to find a final velocity
		Use characteristics of special points in the motion

BF1	I can identify and	Draw system schema diagram and identify force pairs	
	diagram forces in a	Draw a qualitatively accurate Free Body Diagram for an object	
	situation.	Represent forces as vectors with appropriate length & direction	
BF2	I can explain	Explain Newton's 1st Law: How does an object's type of motion	
	Newton's 1st Law	(constant velocity or changing velocity) relate to the forces on the object	
		(balanced or unbalanced)?	
		Explain some situations/motions in terms of Newton's 1st Law	
		Describe experimental evidence for Newton's 1st Law	
BF3	I can apply the	Given the forces on an object	
	balanced forces	- determine sum of the forces graphically and using components	
	model	- determine which force and motion models apply	
		Given an at rest or moving with constant velocity	
		- determine which force and motion models apply	
		- find unknown forces graphically and using components	
		Explain how changing a force in a given situation will affect other forces	
		or the force and motion models that apply.	
BF4	I can explain and	Explain Newton's 3rd Law: How many forces are involved in an	
	apply Newton's 3rd	interaction? How do these forces compare in magnitude? direction? Do	
	Law	these forces act on the same object or different objects?	
		When given one force, identify its Newton's 3rd Law pair	
		Apply N3L in situations to determine unknown forces.	
BF5	I can apply the Law	Reason about how doubling distance, masses, etc. affect the force	
	of Universal	Solve problems involving the Law of Universal Gravitation	
	Gravitation		

6. Balanced Forces Particle Model

7. Unbalanced Forces Particle Model

UF1	I can explain	Explain Newton's 2nd Law: How are force and acceleration related?
	Newton's 2nd Law	How are mass and acceleration related? Reason about how doubling
		mass, doubling force, etc. affect acceleration
		Describe experimental evidence for Newton's 2nd Law
UF2	I can solve problems	Recognize when the forces on an object are not balanced
	involving unbalanced	Determine sum of forces and direction of acceleration from vector
	forces	addition diagram
		Set up an appropriate coordinate system
		Write sum of forces equations for x and y directions
		Solve problems involving force and acceleration.
		Solve multi-step problems involving kinematics and forces
UF3	I can describe	Explain meaning of static friction, kinetic friection, coefficients of static
	friction and solve	and kinetic friction, and how these variables are related.
	related problems	Solve problems involving the static and kinetic friction relationships

8. Linear Momentum

M1	I can apply impulse	Calculate the momentum and change in momentum of a system
	and momentum	Draw a momentum bar chart to represent initial and final momentum
	relationships	Explain the force conditions that cause a system's momentum to change
		Determine the impulse from force and time information or graph
		Relate change in momentum to forces applied to a system over time
M2	I can apply	Define a system so the momentum of the system stays constant
	conservation of	Draw a free body diagram of each object during the event
	momentum	Identify the system with a dashed line boundary
		Write the momentum conservation equation for the system
		Solve for unknowns

9. Energy

E1	I can determine	Define a system		
	energy stored and	Identify energy storage modes at different moments		
	work done	Draw energy pie charts and energy bar charts to represent system energy		
		Determine the work done by a force over some distance		
		Use work to determine the energy transferred in or out of a system		
		Calculate kinetic energy, gravitational potential energy, elastic potential		
		energy, and internal energy		
E2	I can apply	Define a system		
	conservation of	Identify energy storage modes and energy transfers in/out of system		
	energy	Identify initial and final moments that will yield a useful energy equation		
		Write an energy conservation equation for an initial and final moment		
		Use energy conservation equation to solve for unknowns		